CHEMISTRY: ART, SCIENCE, FUN

ТЕОРЕТИЧЕСКИЙ ТУР ЗАДАНИЯ

20 июля 2007 г. Москва, Россия

Общие указания

- Напишите свое имя и личный код на каждой странице Листов Ответов.
- На выполнение заданий вам отводится 5 часов. Если вы продолжите работу после команды СТОП, ваша работа будет аннулирована.
- Записывайте все ответы и расчеты только в специально отведенных для этого местах.
 - Используйте только предоставленные вам ручку и калькулятор.
 - Выданные вам материалы содержат Комплект Заданий, состоящий из 19 страниц (включая обложку и периодическую таблицу), и Листы Ответов, состоящие из 22 страниц.
 - Вы можете попросить английскую версию выданных материалов.
 - Вы можете выйти в туалет, предварительно попросив разрешения.
- После завершения работы положите Комплект Заданий и Листы Ответов в конверт и заклейте его.
- Оставайтесь на своих местах до тех пор, пока вам не разрешат покинуть комнату.

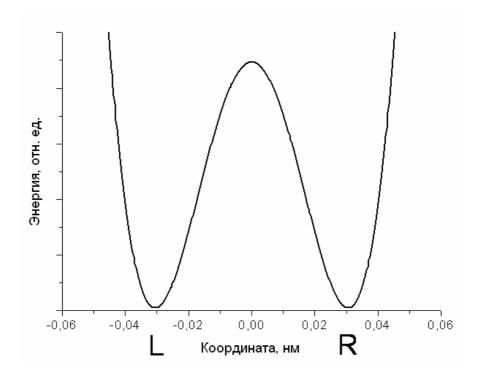
Константы и полезные формулы

 $R = 8.314 \text{ Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}$ $N_{\text{A}} = 6.022 \cdot 10^{23} \text{ моль}^{-1}$ $h = 6.626 \cdot 10^{-34} \text{ Дж} \cdot \text{c}$ $\hbar = 1.055 \cdot 10^{-34} \text{ Дж} \cdot \text{c}$ Универсальная газовая постоянная Постоянная Авогадро Постоянная Планка

 $c = 3.00 \cdot 10^8 \text{ M} \cdot \text{c}^{-1}$ Скорость света в вакууме

Соотношение неопределенности Гейзенберга	$\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$
Энергия Гиббса вещества в конденсированном состоянии при давлении <i>р</i>	G = pV + const
Избыточное давление, вызванное поверхностным натяжением	$\Delta P_{\rm in} = 2\sigma / r$
Соотношение между константой равновесия и энергией Гиббса	$RT \ln K = -\Delta_{\rm r} G^{\circ}$
Энергия Гиббса при постоянной температуре	$\Delta G = \Delta H - T \Delta S$
Изотерма химической реакции	$\Delta G = \Delta G^{\circ} + RT \cdot \ln Q,$
	где $Q = \frac{npoussedenue c(npodykmos)}{npoussedenue c(pearenmos)}$
Уравнение Аррениуса	$k = A \exp\left(-\frac{E_{\rm A}}{RT}\right)$
Осмотическое давление раствора	p = cRT
Закон Бугера-Ламберта-Бера	$A = \lg \frac{P_0}{P} = \varepsilon lc$

$$V$$
(цилиндра) = $\pi r^2 h$
 S (сферы) = $4\pi r^2$
 V (шара) = $\frac{4}{3}\pi r^3$

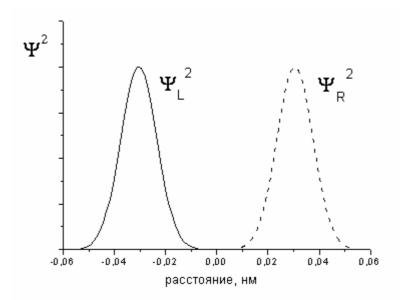

3

Задание 1. Туннелирование протона

Туннелирование протона сквозь энергетические барьеры — важный эффект, наблюдаемый во многих сложных соединениях, содержащих водородные связи (ДНК, белки и т.д.). Пропандиаль (малоновый альдегид) является одной из самых простых молекул, в которых может происходить внутримолекулярный перенос протона.

- **1.1.1** Нарисуйте структуру пропандиаля и двух его изомеров, которые могут находиться в равновесии с ним.
- **1.1.2** В водном растворе малоновый альдегид является слабой кислотой, по силе сравнимой с уксусной. Укажите кислый атом водорода. Объясните причину его кислотности (выберите один вариант в Листах Ответов).

На рисунке приведен энергетический профиль внутримолекулярного переноса протона (зависимость энергии от координаты переносимого протона (в нм)). График зависимости имеет симметричную форму с двумя минимумами.



1.2.1 Нарисуйте структурные формулы, соответствующие минимумам на графике.

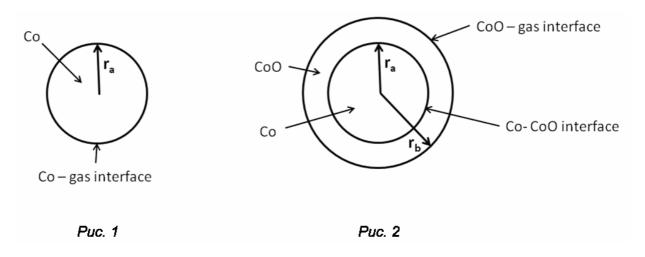
Протон делокализован между двумя атомами и колеблется между двумя минимумами, L и R, с угловой частотой $\omega = 6.48 \cdot 10^{11} \ c^{-1}$. Зависимость плотности вероятности нахождения протона от времени выглядит так:

$$\Psi^{2}(x,t) = \frac{1}{2} \left[\Psi_{L}^{2}(x) + \Psi_{R}^{2}(x) + \left(\Psi_{L}^{2}(x) - \Psi_{R}^{2}(x) \right) \cos(\omega t) \right],$$

где волновые функции $\Psi_L(x)$ и $\Psi_R(x)$ соответствуют протону, локализованному в левом и правом минимуме соответственно:

- **1.3.1** Напишите выражение для плотности вероятности при (a) t = 0, (b) $t = \pi/(2\omega)$, (c) $t = \pi/\omega$. Нарисуйте графики этих трех функций.
- **1.3.2** Не используя расчеты, определите вероятность нахождения протона в левом минимуме при $t = \pi/(2\omega)$.
- **1.3.3** Сколько времени требуется протону для перехода из одного минимума в другой? Какова при этом его средняя скорость?
- **1.3.4** Из графика, приведенного выше, оцените неопределенность положения протона. Рассчитайте минимально возможную неопределенность его скорости. Сравните полученное значение с ответом на вопрос **1.3.3** и сделайте вывод о туннелировании протона (выберите одну из версий в Листах Ответов).

Задание 2. Нанохимия


Металлы подгруппы железа являются эффективными катализаторами гидрирования CO (реакция Фишера–Тропша)

CO +
$$3H_2$$
 Fe, Co \rightarrow CH₄ + H_2 O

Катализатор (например, кобальт) часто используют в виде твёрдых наночастиц сферической формы (рис. 1). Уменьшение размеров частиц катализатора существенно увеличивает каталитическую активность. Нежелательная побочная реакция включает окисление катализатора:

$$Co(s) + H_2O (gas) \longrightarrow CoO(s) + H_2 (gas)$$
 (1)

При этом в реакционном сосуде образуется сплошная фаза оксида кобальта. Это приводит к необратимой потере массы катализатора. Оксид кобальта может также образовываться на поверхности Co(s). В этом случае вокруг поверхности частиц катализатора образуется сферический слой оксида (рис. 2), и каталитическая активность уменьшается.

Рассмотрим, как образование наночастиц влияет на равновесие реакции (1). Полезное уравнение:

$$G^{\circ}(r) = G^{\circ}$$
 (сплошной фазы) $+ \frac{2\sigma}{r} V$.

- **2.1.1** Рассчитайте стандартную энергию Гиббса $\Delta_{r}G^{0}(1)$ и константу равновесия реакции (1) при T=500~K.
- **2.1.2** Рассчитайте константу равновесия реакции (1), если кобальтовый катализатор находится в виде сферических частиц (рис. 1) радиусом

(a)
$$10^{-8}$$
 M,
(b) 10^{-9} M.

Поверхностное натяжение на границе раздела $Co- \Gamma as$ равно $0.16~ Дж/м^2$. CoO образует сплошную фазу.

Смесь газов, участвующих в реакции Фишера–Тропша (СО, СН₄, H₂, H₂О) помещена в реакционный сосуд, содержащий кобальтовый катализатор. Общее давление равно p=1 бар, температура T=500 К. Мольная доля водорода (%) в смеси равна 0.15 %.

6

- **2.2.1** При какой минимальной мольной доле воды (%) в газовой смеси станет возможным самопроизвольное нежелательное окисление катализатора с образованием в системе сплошной фазы CoO? Считайте, что Со катализатор находится в виде
 - (а) сплошной фазы,
 - (b) сферических наночастиц радиусом $r_a = 1$ нм (рис. 1).
- **2.2.2** Что бы вы предложили для защиты наночастиц Со от самопроизвольного окисления с образованием сплошной фазы СоО при постоянном соотношении $p(H_2O) / p(H_2)$ и постоянной температуре:
 - (a) увеличить r_a
 - (b) уменьшить r_a
 - (c) изменение r_a не оказывает влияния.

Допустим теперь, что сплошная фаза оксида кобальта образует сферический слой вокруг наночастицы кобальта. В этом случае наночастица содержит как реагент (Co), так и продукт (CoO) (рис. 2). В следующих задачах обозначим поверхностные натяжения как $\sigma_{\text{CoO-gas}}$, $\sigma_{\text{CoO-Co}}$, радиусы как r_{a} , r_{b} , мольные объёмы как V(CoO).

- 2.3.1 Запишите выражение для стандартной мольной функции Гиббса СоО.
- 2.3.2 Запишите выражение для стандартной мольной функции Гиббса Со.

Указание. Если две сферические поверхности раздела окружают наночастицу, избыточное давление в её центре описывается выражением

$$P_{\text{in}} - P_{\text{ex}} = \Delta P = \Delta P_1 + \Delta P_2 = 2 \frac{\sigma_1}{r_1} + 2 \frac{\sigma_2}{r_2}$$

где r_i , σ_i – соответственно радиус и поверхностное натяжение на i-ой границе раздела.

- **2.3.3** Выразите стандартную энергию Гиббса реакции (1) $\Delta_{\rm r}G^0(1,r_{\rm a},r_{\rm b})$ через $\sigma_{CoO\text{-}gas}$, $\sigma_{CoO\text{-}Co}$, r_a , r_b , V(Co); V(CoO) и $\Delta_{\rm r}G^0(1)$.
- **2.3.4** Когда самопроизвольное окисление начинается, радиусы двух слоёв на наночастице (рис. 2) почти равны, $r_a = r_b = r_0$, и $\Delta_{\rm r} G^0(1, r_{\rm a}, r_{\rm b}) = \Delta_{\rm r} G^0(1, r_{\rm 0})$. Допустим, что $\sigma_{\rm CoO-gas} = 2\sigma_{\rm CoO-Co}$. Какой из графиков в Листах Ответов правильно описывает зависимость $\Delta_{\rm r} G^0(1, r_{\rm 0})$ от $r_{\rm 0}$?
- **2.3.5** Что бы вы предложили для защиты наночастиц Со от самопроизвольного образования внешнего слоя СоО при постоянном соотношении $p(\mathrm{H_2O})/p(\mathrm{H_2})$ и постоянной температуре:
 - (a) увеличить r_0
 - (b) уменьшить r_0
 - (c) изменение r_0 не оказывает влияния.

Справочные данные:

Вещество	ρ , Γ /cm ³	$\Delta_{_{ m f}}G_{\scriptscriptstyle 500}^{\circ}$, кДж/моль
Co (s)	8.90	1 200
CoO(s)	5.68	-198.4
H ₂ O (gas)		-219.1

Задание 3. Неустойчивые химические реакции

Многие химические реакции имеют неустойчивый характер. В зависимости от условий (концентрация, температура) такие реакции могут протекать в различных режимах: устойчивом, колебательном или хаотическом. Механизм большинства таких реакций включает автокаталитические элементарные стадии.

Рассмотрим механизм простой реакции, включающий автокаталитическую стадию:

$$B + 2X \xrightarrow{k_1} 3X$$
$$X + D \xrightarrow{k_2} P$$

 $(B \cup D - \text{реагенты}, X - \text{интермедиат}, P - \text{продукт}).$

- **3.1.1** Напишите суммарное уравнение реакции, соответствующей этому двухстадийному механизму. Напишите кинетическое уравнение для *X*.
- **3.1.2** Выведите кинетическое уравнение этой реакции, используя квазистационарное приближение. Найдите:
- (і) порядок реакции по реагенту В,
- (іі) порядок реакции по реагенту Д,
- (ііі) суммарный порядок реакции.

Пусть реакция протекает в открытой системе, причем вещества B и D постоянно добавляются в систему так, что их концентрации поддерживаются постоянными и равными друг другу: [B] = [D] = const.

- **3.2.1** Не решая кинетическое уравнение, нарисуйте кинетические кривые [X](t) для случаев: 1) $[X]_0 > k_2/k_1$ 2) $[X]_0 < k_2/k_1$
- **3.2.2** Не решая кинетическое уравнение, нарисуйте кинетическую кривую [X](t) для случая, когда реакция протекает в закрытой системе, а начальные концентрации удовлетворяют следующим соотношениям: $[B]_0 = [D]_0$, $[X]_0 > k_2/k_1$

Гораздо более сложное кинетическое поведение присуще реакциям с несколькими интермедиатами. Рассмотрим упрощённый механизм холодного горения этана в кислороде:

$$C_{2}H_{6} + X + \dots \xrightarrow{k_{1}} 2X$$

$$X + Y \xrightarrow{k_{2}} 2Y + \dots$$

$$C_{2}H_{6} + Y + \dots \xrightarrow{k_{3}} 2P$$

При определенных условиях эта реакция протекает в колебательном режиме. Интермедиатами являются пероксид $C_2H_6O_2$ и альдегид C_2H_4O , а P- стабильный продукт.

3.3.1 Определите вещества X, Y, u P. Заполните пробелы в механизме реакции в Листах Ответов.

Поведение неустойчивых химических реакций часто определяется температурой, влияющей на значения констант скорости. В приведённом выше механизме колебания концентраций возможны лишь при $k_1 \ge k_2$. Параметры уравнения Аррениуса были определены экспериментально:

Номер стадии	A , см 3 ·моль $^{-1}$ ·с $^{-1}$	E_A , кДж/моль
1	$1.0 \cdot 10^{11}$	90
2	$3.0 \cdot 10^{12}$	100

3.4.1 Какова наибольшая температура, при которой ещё возможны колебания? Ответ подтвердите расчётом.

Задание 4. Определение воды титрованием по Фишеру

Классическая методика определения воды по Фишеру включает в себя титрование раствора (или суспензии) анализируемого образца в метаноле метанольным раствором йода, содержащим избыток SO_2 и пиридин (C_5H_5N , Py) — реагентом Фишера. При титровании протекают следующие реакции:

$$SO_2 + CH_3OH + H_2O + I_2 = 2HI + CH_3OSO_3H$$

 $Py + HI = PyH^+I^-$
 $Py + CH_3OSO_3H = PyH^+CH_3OSO_3^-$

Содержание йода обычно выражают в мг воды, реагирующей с 1.00 мл раствора титранта (здесь и ниже обозначено T, мг/мл). T определяют экспериментально, проводя титрование образца с известным содержанием воды. В качестве такого образца может выступать, например, какое-либо гидратированное вещество или стандартный раствор воды в метаноле. В последнем случае необходимо учитывать, что сам метанол может содержать определённое количество воды.

Во всех расчётах используйте значения атомных масс с двумя знаками после запятой.

4.1. Иногда титрование воды проводят в пиридине без метанола. Как будет протекать реакция между I_2 , SO_2 и H_2O в этом случае? Приведите уравнение реакции с коэффициентами.

Рассчитайте значение Т раствора йода в каждом из указанных ниже случаев:

- **4.2.1.** 12.20 мл раствора йода было использовано на титрование 1.352 г дигидрата тартрата натрия $Na_2C_4H_4O_6\cdot 2H_2O$.
- **4.2.2.** Известное количество воды (21.537 г) поместили в мерную колбу на 1.000 л и затем довели до метки метанолом. Для титрования 10.00 мл полученного раствора потребовалось 22.70 мл реагента Фишера, в то время как на титрование 25.00 мл метанола потребовалось 2.20 мл этого же реагента Фишера.
- **4.2.3.** 5.624 г воды разбавили метанолом до общего объёма 1.000 л (раствор **A**); 22.45 мл этого раствора затратили на титрование 15.00 мл реагента Фишера (раствора **B**). Затем смешали 25.00 мл метанола (такого же, как использованный выше для приготовления раствора **A**) и 10.00 мл раствора **B**, и эту смесь оттитровали раствором **A**. На титрование пошло 10.79 мл этого раствора.
- **4.3.** Неопытный аналитик попытался определить содержание воды в образце CaO при помощи реагента Фишера. Напишите уравнение(я) реакции(й), приводящих к возможным ошибкам.

Для титрования 0.6387 г кристаллогидрата $Fe_2(SO_4)_3 \cdot xH_2O$ было затрачено 10.59 мл реагента Фишера (T = 15.46 мг/мл).

4.4.1. Какая(ие)другая(ие) реакция(и), кроме приведённых в условии задачи, могут протекать при титровании этого образца? Приведите уравнения двух таких реакций.

10

- **4.4.2.** Запишите полное уравнение реакции $Fe_2(SO_4)_3$: xH_2O с реагентом Фишера.
- **4.4.3.** Рассчитайте состав гидрата $Fe_2(SO_4)_3$: xH_2O (x = yeлoe).

Задание 5. Загадочная смесь (органические прятки).

Эквимолярная смесь **X** трёх бесцветных органических жидкостей **A**, **B**, **C** при нагревании в воде, содержащей каталитические количества соляной кислоты, даёт после отделения воды только смесь уксусной кислоты и этанола в молярном соотношении 1:2 и не содержащей других компонентов. Если добавить к этой смеси каталитическое количество (1–2 капли) серной кислоты, то после долгого кипячения с обратным холодильником можно с 85% выходом получить летучую жидкость **D** с приятным запахом. Соединение **D** не идентично ни одному из веществ **A**, **B**, **C**.

- **5.1.1** *Изобразите структуру вещества* D.
- **5.1.2** К какому классу органических соединений относится **D**? Отметьте правильный вариант в Листе Ответов.
- **5.1.3** Даже если кипячение продолжается вдвое дольше, выход **D** не превышает 85%. Рассчитайте ожидаемый выход **D**, если в реакции была использована смесь этанола и уксусной кислоты в молярном соотношении 1:1. Считайте, что: а) объём смеси не меняется в ходе реакции; b) всеми сопутствующими факторами (эффект растворителя, неаддитивность объёмов, изменение температуры) можно пренебречь. Если вы не можете точно рассчитать выход, укажите, будет ли он: а) таким же (85%); b) больше 85%; c) меньше 85%.

¹Н ЯМР спектры соединений **A, B, C** очень похожи и все содержат синглет, триплет и квартет с отношением интегральных интенсивностей 1:3:2.

Смесь X подвергли щелочному гидролизу. При этом A не вступило в реакцию, и его отделили. Подкисление и непродолжительное кипячение полученного после гидролиза раствора дало смесь уксусной кислоты и этанола в молярном соотношении 2:3; в ходе кипячения происходило выделение газа.

Та же самая смесь X (3.92 г) была растворена в диэтиловом эфире и подвергнута гидрированию в присутствии Pd на активированном угле. При этом было поглощено 0.448 л (нормальные условия) водорода, но после завершения реакции A и C были выделены в неизменном виде (общей массой 3.22 г), а в оставшемся растворе не было обнаружено никаких других органических веществ, кроме диэтилового эфира.

- **5.2.1** Определите и изобразите структуры **A, B,** и **C**.
- **5.2.2** Какие промежуточные соединения образуются при кислотном гидролизе C и шелочном гидролизе B?

Реакция как **B**, так и **C** с ацетоном в присутствии основания с последующим подкислением HCl и небольшим нагреванием даёт одно и то же вещество, сенециовую кислоту, широко распространённую в природе. Также сенециовая кислота может быть получена из ацетона обработкой концентрированной HCl с последующим окислением продукта реакции йодом в щелочной среде. В последней реакции помимо натриевой соли сенециовой кислоты образуется тяжёлый жёлтый осадок **E** (смотри схему 2).

В или **С**
$$\frac{1. \text{ Me}_2\text{CO/основание}}{2. \text{ HCI, t}}$$
 SA $C_5\text{H}_8\text{O}_2$ (1)

- **5.3.1** Определите структуру натриевой соли сенециовой кислоты и нарисуйте схему реакций её получения из ацетона.
- **5.3.2** Изобразите структуру **E**.

Задача 6. Силикаты как основа земной коры

Оксид кремния и производные от него вещества — силикаты — составляют около 90% веществ земной коры. Производным оксида кремния является и замечательный материал — стекло. Никто точно не знает, как именно было открыто стекло. Существует красивая история о финикийских моряках, которые случайно сплавили морской кварцевый песок с кальцинированной содой. Возможно, финикийцы открыли и секрет «жидкого стекла» (ЖС) — растворимого в воде метасиликата натрия (Na_2SiO_3).

6.1.1 Водный раствор ЖС раньше использовали в качестве канцелярского клея. Напишите общее ионное уравнение реакции, ответственной за способность ЖС застывать на воздухе.

Гидролиз ЖС в воде позволяет получить коллоидный раствор кремниевой кислоты.

6.1.2. Заполните Таблицу в Листах Ответов. Напишите общие ионные уравнения, соответствующие процессам, перечисленным в Таблице. Для каждого процесса пометьте квадратик "Yes", если процесс приводит к изменению pH. В противном случае пометьте квадратик "No".

Структура частиц, содержащихся в водных растворах силикатов, весьма сложна. Однако можно выделить главный структурный элемент всех частиц — тетраэдр ортосиликата $(SiO_4^{4-}, 1)$:

$$(1)$$

Для иона $[Si_3O_9]^{n-}$, встречающегося в водных растворах силикатов:

- **6.2.1** Определите заряд (п).
- 6.2.2 Определите число атомов кислорода, связывающих смежные тетраэдры.
- **6.2.3** Изобразите структуру иона, соединив несколько тетраэдров (1). Учтите, что любые смежные тетраэдры имеют одну общую вершину.

Заряженные монослои состава $[Si_4O_{10}]^{m-}$ встречаются в каолините (глине).

6.2.4 Используя тот же подход, что и в пунктах **6.2.1–6.2.3**, изобразите фрагмент слоистой структуры, соединив 16 тетраэдров (1). Учтите, что 10 тетраэдров имеют общие вершины с 2 соседями каждый, а остальные 6 имеют общие вершины с 3 соседями каждый.

При помещении в водный раствор ЖС соли переходных металлов образуют причудливые «деревья», окрашенные в цвет соответствующей соли переходного металла. Например, кристаллы $CuSO_4 \cdot 5H_2O$ образуют голубые «деревья», а кристаллы $NiSO_4 \cdot 7H_2O$ — зелёные «деревья».

- **6.3.1** Определите pH 0.1 M водного раствора сульфата меди-при 25°C, считая, что его гидролиз протекает только в малой степени. Используйте значение первой константы кислотности $\left[Cu(H_2O)_4\right]^{2+}K_a^{\ \ l}=1\cdot 10^{-7}\ M$.
- **6.3.2** Напишите уравнение реакции между водным раствором $CuSO_4$ и метасиликатом натрия (ЖС). Примите во внимание значения pH водных растворов этих солей.

Задание 7. Атеросклероз и интермедиаты в биосинтезе холестерина

Холестерин — широко распространенный в природе липид. Нарушение его метаболизма ведет к атеросклерозу и связанным с ним смертельным заболеваниям.

Вещества X и Y являются ключевыми интермедиатами в биосинтезе холестерина у животных.

X – оптически активная монокарбоновая кислота, состоящая из атомов трех элементов. В организме она образуется из (*S*)-3-гидрокси-3-метилпентандиоил-кофермента A (HMG-CoA). Эта реакция катализируется ферментом **E1**, и не включает воду в качестве субстрата. Затем **X** метаболизируется в **X1** в результате трёхстадийного процесса, протекающего под действием ферментов **E2**, **E3**, **E4**, которые катализируют реакции одного и того же (и только одного) типа. Наконец, **X1** спонтанно (неферментативно) разлагается с образованием изопентенилпирофосфата (3-метилбут-3-енил дифосфата, IPP) и неорганических продуктов:

7.1.1 В Листах Ответов выберите тип(ы) реакции(й), катализируемой(ых) EI и E3. **7.1.2** Изобразите структуру X с учётом стереохимии и укажите абсолютную конфигурацию (R или S) стереоцентра.

У – ненасыщенный ациклический углеводород. При восстановительном озонолизе он даёт смесь трёх органических соединения Y1, Y2 и Y3 в молярном соотношении 2:4:1. У образуется в результате серии последовательных конденсаций двух изомерных соединений: IPP и диметилаллилпирофосфата (3-метилбут-2-енилдифосфата, DAP) с последующим востановлением двойной связи в конечном продукте конденсаций Y5. Атомы углерода в IPP и DAP, участвующие в образовании С–С связи в процессе биосинтеза Y, помечены звёздочкой.

7.2.1 Приведите общее уравнение реакции восстановительного озонолиза DAP, если в качестве восстановителя использован диметилсульфид.

Конечный продукт конденсации (углеводород Y5) образуется в результате соединения двух углеводородных остатков (R) интермедиатаY4:

В ходе каждой реакции конденсации (за исключением реакции на Схеме 2) на 1 моль продукта выделяется 1 моль пирофосфата.

- **7.2.2** Определите брутто-формулу **Y**, если известно, что **Y2** и **Y3** содержат 5 и 4 атома углерода соответственно.
- **7.2.3** Рассчитайте количество молекул IPP и DAP, необходимых для получения одной молекулы Y5, если известно, что все атомы углерода изомерных пирофосфатов входят в состав Y.
- **7.2.4** Изобразите структуру продукта конденсации одной молекулы *IPP* и одной молекулы *DAP* (в образовании С–С связи участвуют только атомы углерода, отмеченные звёздочкой), если известно, что последующий восстановительный озонолиз этого вещества даёт **Y1**, **Y2** и ещё один продукт, содержащий фосфор.

Единственная двойная связь, которая подвергается восстановлению при превращении **Y5** в **Y**, образуется в результате реакции, указанной в Схеме 2. Все двойные связи в **Y** и **Y4** имеют *транс*-конфигурацию.

7.2.5 Изобразите структуры Ү и Ү4 с указанием стереохимии.

Задание 8. РППА открывает путь к новым полимерам

РППА (Радикальная Полимеризация с Переносом Атома) является одним из наиболее перспективных новых подходов к синтезу полимеров. Эта модификация радикальной полимеризации основана на окислительно-восстановительной реакции органических галогенсодержащих соединений с комплексами переходных металлов, в частности Cu(I). Процесс можно описать следующей схемой (М – мономер, Hal – галоген):

Пописать следующей схемой (М — мономер, Hal — галоген):

$$k_{act}$$
 k_{act}
 k_{deact}
 k_{p}
 k_{p}

Константы скорости реакции имеют следующие обозначения: $k_{\rm act}$ — все реакции активации, $k_{\rm deact}$ — все реакции обратимой дезактивации, $k_{\rm p}$ — развитие цепи, $k_{\rm t}$ — необратимый обрыв цепи.

8.1.1 Запишите выражения для скоростей элементарных стадий РППА: активации (v_{act}) , дезактивации (v_{deact}) , развития (v_p) и обрыва цепи (v_t) . Запишите общее уравнение, считая, что в реакцию вступает только один галогенид R'—Hal $(rde\ R'$ — обозначает R—или R— M_n —).

Считайте, что общее число полимерных цепей равно числу молекул инициатора. Считайте также, что в каждый момент времени на всём протяжении полимеризации все цепи имеют одинаковую длину.

8.1.2 Сравните скорость дезактивации со скоростями элементарных стадий РППА.

Зависимость концентрации мономера ([M]) от времени реакции (t) для РППА такова:

$$\ln\left(\frac{[M]}{[M]_0}\right) = -k_p \cdot [R] \cdot t,$$

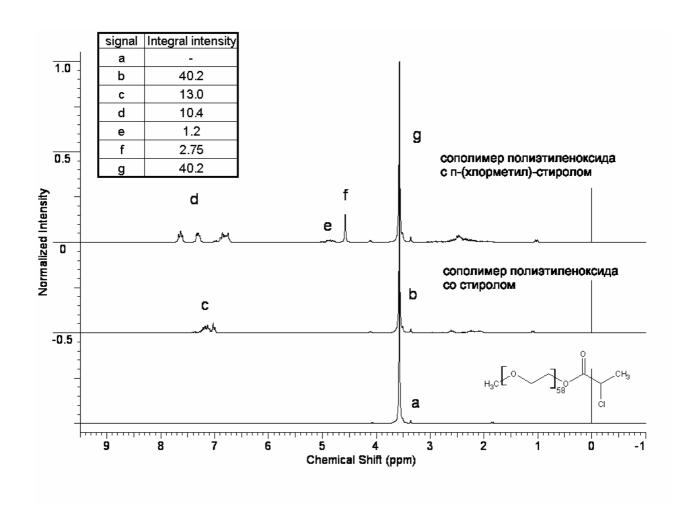
где $[M]_0$ — начальная концентрация мономера, k_p — константа скорости развития цепи, [R] — концентрация активных радикалов.

Для получения образца полимера с помощью РППА были смешаны каталитические количества CuCl и органического лиганда (L) и 31.0 ммоль мономера (метилметакрилата, или MMA). Реакцию инициировали путём добавления 0.12 ммоль тозилхлорида (TsCl). Полимеризацию проводили в течение 1400 с. Значение $k_{\rm p}$ равно 1616 л·моль $^{-1}$ ·с $^{-1}$, а стационарная концентрация радикалов равна $1.76\cdot10^{-7}$ моль·л $^{-1}$ ·

8.2.1 Рассчитайте массу (т) полученного полимера.

В другом эксперименте время полимеризации ММА изменили (все остальные условия реакции остались прежними). Масса полученного полимера была равна 0.73 г. Затем к смеси добавили 23.7 ммоль 2-триметилсилилокси-этилметакрилата (HEMA-TMS) и продолжали полимеризацию ещё в течение 1295 с. Реакционная способность ММА и HEMA-TMS одинакова в условиях проведения реакции.

8.2.2 Рассчитайте степень полимеризации (DP) полученного полимера.


8.2.3 Изобразите структуру полученного полимера (включая концевые группы), обозначив звенья MMA и HEMA-TMS буквами A и B соответственно. Если необходимо, для представления структуры сополимеров используйте следующие обозначения: \underline{block} (блоксополимер), \underline{stat} (статистический), \underline{alt} (чередующийся), \underline{grad} (градиентный), \underline{graft} (привитой). Например, (A_{65} -graft- C_{100})-stat- B_{34} означает, что цепи полимера C привиты к звеньям A в статистическом сополимере A и B.

РППА была использована для синтеза двух блок-сополимеров, P1 и P2. Один блок в обоих сополимерах был одинаков и был синтезирован из моно-2-хлоропропионил-полэтиленоксида, использованного в качестве макроинициатора:

Второй блок в P1 состоял из звеньев стирола (C), а в P2 – из звеньев п-(хлорметил)стирола (D).

¹Н ЯМР спектры макроинициатора, Р1 и Р2 представлены ниже. Интегральные интенсивности характеристических сигналов приведены в таблице.

- **8.3.1** Отнесите сигналы в ¹Н ЯМР спектрах структурным фрагментам, приведённым в Листах Ответов.
- **8.3.2** Определите мольные доли звеньев С и D и молекулярные массы P1 и P2.
- **8.3.3** Напишите все возможные уравнения реакций активации, протекающие при синтезе P1 и P2. Вы можете использовать символ R для обозначения любой не изменяющейся части макромолекулы, но вы должны указать, какая структура ей соответствует.
- **8.3.4** Нарисуйте структуру P1 и одну из возможных структур P2, изображая цепь полиэтиленоксида волнистой линией и обозначая звенья мономеров буквами C и D соответственно.

1 H 1.01	Periodic Table of Elements with atomic masses												2 He 4.00				
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.3	57-71	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.19	83 Bi 208.98	84 Po 208.98	85 At 209.99	86 Rn 222.02
87 Fr 223	88 Ra 226	89-103	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 264	108 Hs 265	109 Mt 268									

5 7	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	144.92	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
227	232	231	238	237	244	243	247	247	251	252	257	258	259	262