Задача 16. Фрукты, овощи и атомы

Решение

1. **a**) Поскольку в слоях A и B томаты касаются друг друга, то правильные n-гранники (n — число соседей), с серединами сторон в точках касания ограничивают объем пространства для 1 томата. n-гранники: квадрат и правильный шестиугольник заполняют все пространство без остатка, значит $\phi = S_{\text{томат}}/S_{\text{многогр}}$. $R = R_{\text{овоща/фрукта}}$ (здесь и далее).

$$S_{\mbox{\tiny KBAДрAT}} = 4R^2, \, S_{\mbox{\tiny Шестиугольник}} = \, 2\sqrt{3} \, R^2. \, S_{\mbox{\tiny ТОМАТ}} = \pi \, R^2.$$

$$\phi_A = \frac{\pi}{4} \approx 0.7854$$
; $\phi_B = \frac{\pi}{2\sqrt{3}} \approx 0.9069$. **б**) Тип В.

2. **a**) Плотности упаковок рассчитаем, выбрав произвольным образом объемные фигуры (ОФ), заполняющие пространство, определив для них объем (V_{ϕ}), число томатов в фигуре (Z):

$$\varphi = \frac{4\pi ZR^3}{3 \cdot V_{\phi}}$$

Тип упаковки	(1) ПК	(2) ОЦК	(3) ΠΓ	(4) ГПУ
ОФ	Куб, а = 2R	Куб, $a = \frac{4\sqrt{3}}{3}R$	Ромбическая приз- ма, h = 2R, L = 2R	4^{x} -угольная призма $h = \frac{4\sqrt{6}}{3} R, L = 2R$
V_{ϕ}	8R ³	$\frac{64\sqrt{3}}{9} R^3$	$4\sqrt{3} R^3$	$8\sqrt{2} R^3$
Z	$8 \cdot (1/8) = 1$	$1 + 8 \cdot (1/8) = 2$	$4 \cdot (1/12) + 4 \cdot (1/6) = 1$	$1+4\cdot(1/12)+4\cdot(1/6)=2$
φ	0.5236	0.6802	0.6046	0.7405

- **б**) Наиболее эффективный способ заполнения пространства ГПУ (4).
- в) Расчет для ГЦК: ОФ куб а = $2\sqrt{2}$ R, Z = $6\cdot(1/2)$ + $8\cdot(1/8)$ = 4, V_{φ} = $16\sqrt{2}$ R 3 .

$$\phi_{\Gamma I I K} = \frac{16\pi}{3 \cdot 16\sqrt{2}} \approx 0.7405.$$

- г) Для плотнейшей упаковки шаров плотность упаковки не зависит от слойности.
- 3. **a**) Чтобы персики не помялись, необходимо, чтобы радиус пустоты был меньше радиуса персика (r радиус персика, R радиус арбуза).

Тип упаковки	(1) ПК	(2) ОЦК	(3) ГЦК
Транспортабельность	$2r < (a_{\Pi K}\sqrt{3} - 2R)$	2r < (a _{ОЦК} -2R)	$2r < (a_{\Gamma \coprod K} - 2R)$
r(max)/R	$(\sqrt{3} - 1) \approx 0.7321$	$(\frac{2\sqrt{3}}{3}-1)\approx 0.1547$	$(\sqrt{2} - 1) \approx 0.4142$

6) Число персиков не может быть больше числа соответствующих пустот:

Тип упаковки	ПК	ОЦК	ГПУ	ГЦК
Z _{перисиков}	1	$6 \cdot 1/2 + 12 \cdot 1/4 = 6$	2	$1 + 12 \cdot 1/4 = 4$
Z _{персиаков} /Z _{арбузов}	1	3	2	1

в) Рассчитаем максимальную плотность по формуле:

$$\varphi = \frac{4\pi R^3 Z_{ap\delta y_3} \left(1 + \frac{Z_{nepcux} r^3(\text{max})}{Z_{ap\delta y_3} R^3} \right)}{3 \cdot V_{ab}}$$

Тип упаковки	ПК	ОЦК	ГЦК
ОФ	Куб, a = 2R	Kyб, $a = \frac{4\sqrt{3}}{3}R$	Куб, $a = 2\sqrt{2} R$
V_{Φ}	8R ³	$\frac{64\sqrt{3}}{9} R^3$	$16\sqrt{2} \text{ R}^3$
Z _{персик} /Z _{арбуз}	1	3	1
$1 + \frac{Z_{nepcu\kappa}r^3(\text{max})}{Z_{ap\delta y_3}R^3}$	1.3924	1.0111	1.0711
φ	0.721	0.6878	0.7931

4. а) Заполнив пустоту в центре одной из граней ОЦК, из соображений трансляционной симметрии следует считать занятой и противоположную грань ячейки, при этом окажется, что заполнение любой из оставшихся пустот приведет к сочленению октаэдров по ребрам. Рассмотренная ячейка не может соединяться с аналогичными ячейками гранями (иначе возникнет контакт занятых пустот по ребру), но может ребрами. В таком случае заполненные ячейки будут располагаться в каждой из плоскостей <100> в шахматном порядке. При переходе от плоскости к плоскости вдоль [100] пустые и заполненные ячейки могут чередоваться (по мотиву чередования № и С1 в структуре каменной соли) или образовывать колонки. При этом соотношение арбуз: персик в каждом из случаев будет одинаково т.к. соотношение заполненной и незаполненной ячеек одинаково - 1 : 1. В таком случае на 1_{яч}·½-2 = 1 персик приходится 2_{яч}·2 = 4 арбуза, т.е. оптимальное соотношение персик : арбуз ¼. Если бы все арбузы имели 2 соседей-пресиков в октаэдрических пустотах, то их соотношение персик : арбуз = число соседей у арбуза : число соседей у персика = 2 : 6 = 1/3, однако такого расположения для ОЦК добиться нельзя. Для ребят, знакомых с основными структурными типами неорганических веществ трансформацию структуры можно описать так: заполнение октаэдрических пустот

приводит к каркасу из октаэдров, соединенных общими вершинами по мотиву структуры перовскита ABX_3 , при этом оказывается, что арбуз выступает как в роли A – катиона, так и в роли X – аниона, отсюда сразу следует и невозможность дальнейшего уплотнения, и соотношение персик : арбуз во фруктовом ассорти.

Для ГЦК, поместив персик в центр ячейки, обнаруживаем, что для достижения требований условия большее количество пустот заполнить нельзя. Помимо этого, в случае ГЦК дополнительных построений не потребуется, и можно вычислить соотношение персик : арбуз = 1: $Z_{\text{КПУ}} = \frac{1}{4}$. Равенство результатов вычислений не должно пугать, это — закономерность. Если переместить центр ячейки ГЦК в заполненную пустоту, можно увидеть все тот же перовскит ABX_3 , с теми же оговорками, что сделаны выше. Оказывается, что такие виртуальные трансформации разных структур привели к аналогичным результатам.

- **б**) Для ГЦК $Z_{\text{яблок}} = 8$, $Z_{\text{персиков}}/Z_{\text{арбузов}} = 2$.
- 5. а) Для выполнения условий дифракции необходимо, чтобы произведение обратных координат дифрагирующих плоскостей ($\frac{h}{a}\frac{k}{a}\frac{l}{a}$) на координаты каждой из микроглобул в ячейке

были целым числом. В ГЦК есть 3 независимые трансляции $(\frac{a}{2} \frac{a}{2} 0), (\frac{a}{2} 0 \frac{a}{2})$ и $(0 \frac{a}{2} \frac{a}{2})$, тогда условие наблюдения дифракционного максимума: h + k = 2n, k + l = 2m, h + l = 2q, где m, n, q – натуральные числа. Значит условию удовлетворяет отражение 1 1 1.

б)
$$a=2\sqrt{2}r$$
 , $d_{\min}=\frac{2\sqrt{2}r}{\sqrt{h^2+k^2+l^2}}=2\sqrt{\frac{2}{3}}\cdot 450\approx 734.85$ нм.

$$\lambda = d_{\min} \cdot \sin 30^{\circ} = 734.85 \cdot \frac{1}{2} \approx 367.42 \text{ HM}.$$